A unifying formulation of the Fokker-Planck-Kolmogorov equation for general stochastic hybrid systems
نویسنده
چکیده
A general formulation of the Fokker-Planck-Kolmogorov (FPK) equation for stochastic hybrid systems is presented, within the framework of Generalized Stochastic Hybrid Systems (GSHS). The FPK equation describes the time evolution of the probability law of the hybrid state. Our derivation is based on the concept of mean jump intensity, which is related to both the usual stochastic intensity (in the case of spontaneous jumps) and the notion of probability current (in the case of forced jumps). This work unifies all previously known instances of the FPK equation for stochastic hybrid systems, and provides GSHS practitioners with a tool to derive the correct evolution equation for the probability law of the state in any given example.
منابع مشابه
Numerical Studies and Simulation of the Lower Hybrid Waves Current Drive by using Fokker – Planck Equation in NSST and HT-7 Tokamaks
Recent experiments on the spherical tokamak have discovered the conditions to create a powerful plasma and ensure easy shaping and amplification of stability, high bootstrap current and confinement energy. The spherical tours (ST) fusion energy development path is complementary to the tokamak burning plasma experiment such as NSTX and higher toroidal beta regimes and improves the design of a po...
متن کاملComputational Nonlinear Stochastic Control based on the Fokker-Planck-Kolmogorov Equation
The optimal control of nonlinear stochastic systems is considered in this paper. The central role played by the Fokker-Planck-Kolmogorov equation in the stochastic control problem is shown under the assumption of asymptotic stability. A computational approach for the problem is devised based on policy iteration/ successive approximations, and a finite dimensional approximation of the control pa...
متن کاملApplication of multi-scale finite element methods to the solution of the Fokker–Planck equation
This paper presents an application of multi-scale finite element methods to the solution of the multi-dimensional Fokker–Planck equation. The Fokker–Planck, or forward Kolmogorov, equation is a degenerate convective–diffusion equation arising in Markov-Process theory. It governs the evolution of the transition probability density function of the response of a broad class of dynamical systems dr...
متن کاملPseudo-spectral Matrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation
This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.
متن کاملVariational Formulation of the Fokker–planck Equation with Decay: a Particle Approach
We introduce a stochastic particle system that corresponds to the Fokker–Planck equation with decay in the many-particle limit, and study its large deviations. We show that the large-deviation rate functional corresponds to an energy-dissipation functional in a Mosco-convergence sense. Moreover, we prove that the resulting functional, which involves entropic terms and the Wasserstein metric, is...
متن کامل